Material properties for concrete¶
The following functions are related to calculation of material properties of concrete.
Strength¶
- structuralcodes.codes.ec2_2004.fcd(fck: float, alpha_cc: float, gamma_c: float) float[source]¶
The design compressive strength of concrete.
EN 1992-1-1:2004, Eq. (3.15).
- Parameters:
fck (float) – The characteristic compressive strength in MPa.
alpha_cc (float) – A factor for considering long-term effects on the strength, and effects that arise from the way the load is applied.
gamma_c (float) – The partial factor of concrete.
- Returns:
The design compressive strength of concrete in MPa
- Return type:
float
- structuralcodes.codes.ec2_2004.fcm(fck: float, delta_f: float = 8) float[source]¶
The mean compressive strength of concrete.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Keyword Arguments:
delta_f (float) – The difference between the mean and the characteristic strength.
- Returns:
The mean compressive strength in MPa.
- Return type:
float
- structuralcodes.codes.ec2_2004.fctm(fck: float) float[source]¶
The mean tensile strength of concrete.
EN 1992-1-1: 2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The mean tensile strength in MPa.
- Return type:
float
- structuralcodes.codes.ec2_2004.fctk_5(fctm: float) float[source]¶
The 5% fractile of the tensile strength of concrete.
EN 1992-1-1: 2004, Table 3.1.
- Parameters:
fctm (float) – The mean tensile strength of concrete in MPa.
- Returns:
The 5% fractile of the tensile strength in MPa.
- Return type:
float
- structuralcodes.codes.ec2_2004.fctk_95(fctm: float) float[source]¶
The 95% fractile of the tensile strength of concrete.
EN 1992-1-1: 2004, Table 3.1.
- Parameters:
fctm (float) – The mean tensile strength of concrete in MPa.
- Returns:
The 95% fractile of the tensile strength in MPa.
- Return type:
float
Stiffness¶
Parameters of constitutive relations¶
- structuralcodes.codes.ec2_2004.eps_c1(fcm: float) float[source]¶
The strain at maximum compressive stress of concrete (fcm) for the Sargin constitutive law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fcm (float) – The mean compressive strength of concrete in MPa.
- Returns:
The strain at maximum compressive stress, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.eps_cu1(fck: float) float[source]¶
The ultimate strain for the Sargin constitutive law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The ultimate strain, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.eps_c2(fck: float) float[source]¶
The strain at maximum compressive stress of concrete for the parabolic-rectangular law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The strain at maximum compressive stress, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.eps_cu2(fck: float) float[source]¶
The ultimate strain of the parabolic-rectangular law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The ultimate strain, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.eps_c3(fck: float) float[source]¶
The strain at maximum compressive stress of the bi-linear law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The strain at maximum compressive stress, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.eps_cu3(fck: float) float[source]¶
The ultimate strain of the bi-linear law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The ultimate strain, absolute value, no unit.
- Return type:
float
- structuralcodes.codes.ec2_2004.n_parabolic_rectangular(fck: float) float[source]¶
The exponent in the parabolic-rectangular law.
EN 1992-1-1:2004, Table 3.1.
- Parameters:
fck (float) – The characteristic compressive strength of concrete in MPa.
- Returns:
The exponent n, absolute value, no unit.
- Return type:
float
Time development of properties¶
- structuralcodes.codes.ec2_2004.beta_cc(t: ArrayLike, s: float) ArrayLike[source]¶
The time development function for compressive strength of concrete.
EN 1992-1-1:2004, Eq. (3.2).
- Parameters:
t (ArrayLike) – The time in days to evaluate the development function for.
s (float) – The scale factor in the exponent for the time development function. s = 0.20 for class R, 0.25 for class N, and 0.38 for class N.
- Returns:
The value of the time development function.
- Return type:
ArrayLike
- structuralcodes.codes.ec2_2004.beta_ct(t: ArrayLike, s: float) ArrayLike[source]¶
The time development function for tensile strength of concrete.
EN 1992-1-1:2004, part of Eq. (3.4).
- Parameters:
t (ArrayLike) – The time in days to evaluate the development function for.
s (float) – The scale factor in the exponent for the time development function. s = 0.20 for class R, 0.25 for class N, and 0.38 for class N.
- Returns:
The value of the time development function.
- Return type:
ArrayLike
- structuralcodes.codes.ec2_2004.beta_E(t: ArrayLike, s: float) ArrayLike[source]¶
The time development function for Young’s modulus of concrete.
EN 1992-1-1:2004, part of Eq. (3.5).
- Parameters:
t (ArrayLike) – The time in days to evaluate the development function for.
s (float) – The scale factor in the exponent for the time development function. s = 0.20 for class R, 0.25 for class N, and 0.38 for class N.
- Returns:
The value of the time development function.
- Return type:
ArrayLike
- structuralcodes.codes.ec2_2004.s_time_development(cement_class: Literal['S', 'N', 'R']) float[source]¶
Return the scale factor for the exponent for the time development function.
EN 1992-1-1:2004, Eq. (3.2).
- Parameters:
cement_class (str) – The cement class, either ‘S’, ‘N’ or ‘R’.
- Returns:
The scale factor that depends on the cement type.
- Return type:
float
- Raises:
ValueError – If an invalid cement class is provided.
- structuralcodes.codes.ec2_2004.fcm_time(fcm: float, beta_cc: ArrayLike) ArrayLike[source]¶
Calculate the compressive strength as function of time.
EN 1992-1-1:2004, Eq. (3.1).
- Parameters:
fcm (float) – The reference value for the compressive strength.
beta_cc (ArrayLike) – The value(s) of the time development function.
- Returns:
The calculated value(s) of the compressive strength.
- Return type:
ArrayLike
Note
The value of beta_cc should be calculated with the function beta_cc.
- structuralcodes.codes.ec2_2004.fctm_time(fctm: float, beta_cc: ArrayLike, alpha: ArrayLike) ArrayLike[source]¶
Calculate the tensile strength as function of time.
EN 1992-1-1:2004, Eq. (3.4).
- Parameters:
fctm (float) – The reference value for the tensile strength.
beta_cc (ArrayLike) – The value(s) of the time development function.
alpha (ArrayLike) – An exponent for the time development function. It should be set to 1 for t < 28, and 2/3 else.
- Returns:
The calculated value(s) of the tensile strength.
- Return type:
ArrayLike
Note
The value of beta_cc should be calculated with the function beta_cc. Alternatively, the time development function for the tensile strength could be calculated directly with the function beta_ct.
- structuralcodes.codes.ec2_2004.Ecm_time(fcm: float, fcm_time: ArrayLike, Ecm: float) ArrayLike[source]¶
Calculate the Young’s modulus as function of time.
EN 1992-1-1:2004, Eq. (3.5).
- Parameters:
fcm (float) – The reference value for the compressive strength.
fcm_time (float) – The value(s) of the compressive strength at the point(s) in time.
Ecm (float) – The reference value for the Young’s modulus.
- Returns:
The calculated value(s) of the Young’s modulus.
- Return type:
ArrayLike
Note
The value of fcm_time should be calculated with the function fcm_time. Alternatively, the time development function for the Young’s modulus could be calculated directly with the function beta_E.